Литий-ионные аккумуляторы

Литий-ионные аккумуляторы весьма распространены в качестве источников питания современной бытовой электроники.
В настоящее время это самый популярный тип аккумуляторов для сотовых телефонов, ноутбуков, цифровых фотоаппаратов.
Наибольшие же перспективы роста рынка литий-ионных аккумуляторов открываются всвязи с использованием этих вторичных химических источников тока в качестве источника питания электротранспорта.

Ваша оценка: Нет Рейтинг: 3.8 (40 голоса)

История появления Li-ion аккумуляторов

Первые эксперименты с литиевыми аккумуляторами относятся к 1912 году, но первые серийно произведенные литиевые батареи появились в 1970-х, они были неперезаряжаемые.

В середине 1980-х появились серийные литиевые аккумуляторы, но их использование было ограничено из-за высокой взрывоопасности - при циклированни на литиевом аноде образовывались дендритообразные кристаллы лития, которые прорастали
до катода и провоцировали внутриэлементное короткое замыкание и взрыв из-за перегрева, который запускал химическую реакцию между литием и органическим электролитом.
С 1991 года началось коммерческое использование литий-ионных аккумуляторов, изготовленных фирмой Sony. В этих аккумуляторах использовался кобальтат лития (LiCoO2) и кокс в качестве материала электродов. Электролитом был раствор соли лития в органическом растворителе. При соблюдении условий разряда/заряда данные элементы достаточно безопасны в плане взрыва, что обеспечило их коммерческий успех.
В конце 1990-х - начале 2000-х появилось много новых игроков на рынке литий-ионных аккумуляторов - стали производится батареи на базе кобальтатов лития на графитовых электродах, появились батареи на основе более дешевой химии - LiNiO2, LiMnO2, LiMn2O4, LiFePO4. Также появились аккумуляторы с полимерным электролитом для использования в миниатюрной электронике.
В настоящее время каждые полгода появляются литий-ионные аккумуляторы, основанные на новых химических и конструктивных составляющих. Возможности совершенствования, основанных на литии аккумуляторов, еще далеко не исчерпаны, что вселяет надежду на появление все более емких, безопасных и дешевых аккумуляторов на рынке в самом недалеком будущем.

Ваша оценка: Нет Рейтинг: 2.9 (30 голоса)

Преимущества и недостатки

Рассмотрим преимущества и недостатки литий-ионных аккумуляторов и аккумуляторных батарей на их основе.

Преимущества


  • наибольшая плотность энергии из всех разновидностей аккумуляторов – как объемная, так и весовая
  • напряжение питания на элементе - 3,6В, что в 3 раза выше, чем у NiMH и NiCd аккумуляторов и почти в 2 раза выше, чем для свинцово-кислотных аккумуляторов
  • быстрый процесс заряда батарей - до 90% емкости за 30-40 минут
  • высокий показатель ресурса - свыше 1000 циклов разряда/заряда (в лабораторных условиях)
  • низкий показатель саморазряда - до 5% в месяц
  • дружественность окружающей среде - могут утилизироваться без предварительной переработки

Недостатки

  • возможность взрыва при механическом повреждении или перезарядке аккумулятора (возможность взрыва для современных аккумуляторов резко снижена)
  • достаточно быстрое старение аккумулятора - большинство аккумуляторов резко снижают свои характеристики при хранении или использовании более 5 лет
  • для создания аккумуляторных батарей требуется сложная система управления батареей
  • высокая стоимость, но над этим параметром усиленно работают китайские производители

Ваша оценка: Нет Рейтинг: 4.3 (20 голоса)

Как продлить жизнь аккумулятору

С момента начала массового производства литий-ионных аккумуляторных батарей в 1991 году фирмой Sony уже прошло более 17 лет, однако многие процессы, происходящие в литий-ионных аккумуляторах до сих пор мало изучены. В данной статье вы сможете прикоснуться к тем крупицам знания по продлению срока жизни литий-ионных аккумуляторов, которые накопились за эти годы.

Материал в статье преподнесен в виде подборки отдельных фактов, касающихся жизни и условий работы литий-ионных аккумуляторных батарей. Эта подборка фактов позволит со знанием дела определить стратегию сохранения жизни литий-ионного аккумулятора в зависимости от области использования в следующей статье цикла.
Литий-ионные аккумуляторы больше страдают от процесса "старения" (ухудшение характеристик на протяжении времени), чем от циклирования. Это означает, что большинство аккумуляторов не может служить свыше 5 лет при обычных условиях эксплуатации (оптимистичный прогноз). Мораль такова — если покупаете литий-ионный аккумулятор, внимательно относитесь к дате изготовления — при полугодовой давности вы потеряете 10% от заявленного срока жизни.

Старение батарей ускоряется при работе или хранении в жарких условиях — смотри таблицу для литий-кобальтовых аккумуляторов (для литий-марганцевых и литий-железных батарей результаты немного лучше).

Деградация характеристик литий-кобальтовых аккумуляторов всвязи с температурой хранения


Температура, °C 40% уровень заряда (рекомендуемый уровень заряда) 100% уровень заряда (поддерживается пользователями при работе)
0°C 98% через 1 год 94% через 1 год
25°C 96% через 1 год 80% через 1 год
40°C 85% через 1 год 65% через 1 год
60°C 75% через 1 год 60% через 3 месяца

Учитывая, что стандартом определения момента завершения жизни аккумулятора производителем является снижение его емкости до 80% от номинальной понятно, откуда появились 5 лет жизни (когда аккумулятор работает при температуре не выше 25°C и большинство времени находится в полу разряженном состоянии). Поэтому следует правильно организовывать охлаждение батарей при эксплуатации и заряжать аккумулятор непосредственно перед использованием, добиваясь среднего уровня заряда в процессе эксплуатации близкого к 40% (проверено на практике – при заряде батареи моего мобильного раз в 3-4 дня до 80-90% емкости и ношении его во внешнем кармане одежды – срок жизни уже достиг более 4х лет при сохранности емкости).
Следует учитывать температурный фактор и при эксплуатации литий-ионных аккумуляторов — разряд может осуществляться и при низких температурах (в зависимости от химии аккумулятора от -25°C до -10°C), но заряд обязательно должен производиться только при положительной (по Цельсию) температуре батареи.
Количество циклов заряда-разряда не так сильно влияют на ресурс литий-ионной батареи, как возраст и температурный фактор – при коротком времени циклирования (непрерывные циклы заряда/разряда током 0,5C) и хорошем охлаждении литий-ионная батарея может выдержать от 1000 циклов (для литий-кобальтовых) до 2000-3000 циклов (для литий-марганцевых).
Превышение конечного напряжения после заряда с 4,2В до 4,35В повышает емкость аккумулятора на 10-15% при снижении времени жизни в 4-6 раз.
BMS (Battery Manegement System) - система управления батареей - электронный прибор, который обязательно ставится на каждую аккумуляторную банку в батарее для контроля процесса заряда-разряда батареи, продвинутые BMS также имеют логику для определения температуры, количества зарядов/разрядов, оценку вероятности выхода из строя аккумулятора. В основном, задача BMS заключается в контроле напряжения на аккумуляторе и шунтировании токов при достижении граничных пределов, также может контролироваться температура элемента.
Для избегания выхода из строя литий-ионного аккумулятора при полной его разрядке необходимо немедленно зарядить его. В противном случае, BMS не позволит начаться заряду когда напряжение на элементе упадет ниже определенного порога из-за саморазряда батареи по соображениям безопасности (проверено на практике – я было оставил свой наладонник на 3 недели в почти разряженном состоянии и потом, несмотря на поздние реанимационные мероприятия, душа аккумулятора благополучно отошла в лучший мир (я на это искренне надеюсь:)).
Литий-ионные батареи плохо переносят низкие токи заряда и высокие токи разряда (замечание про высокие токи разряда не относится к LiFePO4 аккумуляторам, которые могут переносить большие токи разряда, и, в меньшей степени для LiMnO2 и LiMn2O4). Для достижения максимальной длительности жизни необходимо использовать токи 0,5C (половина номинальной емкости) для заряда и разряда аккумулятора. Для LiCoO2 аккумуляторов нежелательно переходить предел в 1C для токов заряда и разряда (разряд при 2C приводит к сокращению жизни в 2 раза, при 3C – в 4 раза).
В заключение можно сказать, что соблюдение всех указанных предосторожностей позволит достигнуть большого срока жизни (ресурса) вашего литий-ионного аккумулятора и он будет долго радовать вас своей емкостью и низким уровнем внутреннего сопротивления. Однако каждые 6-12 месяцев появляются литий-ионные аккумуляторы на основе других химических соединений и внутренней конструкции – у них будут немножко (или множко:) другие характеристики. К заявлениям производителей по поводу новых аккумуляторов нужно относиться с известной долей скептицизма, поскольку только опыт длительной эксплуатации может дать ответ на вопросы соответствия заявленных параметров реальным и проверить решения по поводу правильной эксплуатации литий-ионных аккумуляторов.
Данная статья отмечает субъективный взгляд на проблему продления ресурса литий-ионных аккумуляторов. Практически все цифровые данные взяты из проверенных источников (http://batteryuniversity.com, с сайтов производителей литий-ионных батарей — Valence, ThunderSky, Everspring), однако во время компиляции информации некоторые слишком оптимистичные заявления производителей батарей пришлось опустить или несколько исправить.

Ваша оценка: Нет Рейтинг: 3.7 (19 голоса)

Правила эксплуатации

При существующем темпе роста смышлености (SMART) контроллеров устройств, мы скоро будем нижайше кланяться своему аккумулятору с просьбой отдать толику его энергии для работы так нужного нам устройства. А также заключать договор о своевременной кормежке аккумулятора электроэнергией и вносить взносы в фонд социального страхования аккумуляторов. Кроме того, придется оплачивать аккумулятору медицинскую страховку и пай в пенсионном фонде:).

Правильная эксплуатация аккумуляторов сотовых телефонов

Электроды литий-ионных аккумуляторов, из-за процесса производства уже наполовину заряжены, однако свежий аккумулятор нежелательно сразу же проверять под нагрузкой. Первоначально литий-ионный аккумулятор требуется полностью зарядить. Использование аккумулятора без первоначальной подзарядки может резко сократить доступную пользователю емкость.
После первоначальной зарядки аккумулятора желательно его полностью разрядить для калибровки системы управления аккумулятором. Сразу же после разрядки подзарядите аккумулятор. Циклы калибровки для сотовых телефонов с литий-ионными аккумуляторами не следует производить часто (обычно хватает одного цикла полного заряда-разряда в 3 месяца). Сами циклы калибровки нужны только для правильного отображения прогноза оставшейся емкости аккумулятора. Рекомендуемые же некоторыми пользователями и продавцами трех-четырех кратные глубокие циклы заряда-разряда могут оказаться фатальными для не нового литий-ионного аккумулятора.
Желательно использовать оригинальные аккумуляторы от производителя мобильного телефона. Так как функции системы управления аккумуляторной батареей для мобильных сильно урезаны, а зарядом руководит система подзарядки сотового телефона, то аккумулятор от стороннего производителя проживет меньше, поскольку система подзарядки не знает особенностей не оригинальных аккумуляторов.
В связи с тем, что эффект «старения» литий-ионных аккумуляторов резко усиливается при высокой температуре, сотовый телефон желательно держать подальше от источников тепла (тело человека, прямые солнечные лучи, радиатор отопления).
Желательно часто не заряжать аккумулятор сотового телефона полностью, а также ставить аккумулятор на подзарядку раньше, чем уровень заряда достигнет красного значения индикатора заряда (примерно 20% остаточной емкости).
Старение литий-кобальтовых аккумуляторов (наиболее распространенных аккумуляторов для сотовых напрямую зависит от уровня нагрузки). Говорите по мобильному меньше и реже — это позволит сохранить здоровье не только вашему аккумулятору, но и вам самим.
Не заряжайте аккумулятор, побывавший на морозе до тех пор, пока он не прогреется до положительной (по Цельсию) температуры — это важное требование безопасности эксплуатации литий-ионных аккумуляторов.

Правильная эксплуатация аккумуляторных батарей ноутбуков

Аккумуляторная батарея ноутбука содержит полноценную систему управления, что часто позволяет пользователю забыть о том, правильно ли он эксплуатирует батарею. Однако, при работе с ноутбуком следует помнить о некоторых вещах.
При первом подключении аккумуляторную батарею ноутбука следует полностью зарядить, после чего произвести калибровку системы управления. Калибровка осуществляется полным разрядом батареи при постоянной нагрузке (необходимо войти в настройки BIOS, и оставить ноутбук работать при отключении от сети до выключения, во многих настройщиках BIOS есть специальный пункт Calibration, предназначенный для выполнения данной задачи). Не забудьте сразу же зарядить батарею своего ноутбука после полной разрядки.
Калибровка аккумуляторной батареи ноутбука обычно осуществляется раз в 1-3 месяца, для исключения эффекта «цифровой памяти» — в процессе работы от аккумулятора постепенно накапливаются ошибки определения остаточной емкости, из-за чего снижается время автономной работы ноутбука.
Для некоторых моделей ноутбуков существуют утилиты производителя для задания уровня разряда батареи, при котором начинает производится заряд. Если аккумулятор ноутбука служит как источник бесперебойного питания (работа осуществляется стационарно с питанием от сети), то установка уровня допустимого разряда в 40% и поддержание аккумуляторной батареи в полуразряженном состоянии позволит продлить жизнь батареи в два раза.
Часть ноутбуков поставляются с дополнительной батареей. Если вы долго не пользуетесь ей, имеет смысл разрядить дополнительную батарею до 40%, упаковать в полиэтиленовый пакет с вакуум-замком и оставить пакет в холодильной камере холодильника при температуре 3-4°C.

Правильная эксплуатация батарей Power Tools и видеокамер

Правила эксплуатации батарей Power Tools (в основном, батарей шуруповертов) и видеокамер мало отличаются от правил эксплуатации аккумуляторов сотовых телефонов.
Отличием является то, что использование этих устройств в быту осуществляется довольно редко, а стоимость аккумуляторов высока и эти аккумуляторы со временем становятся мало доступны. Для обеспечения длительной жизни таких аккумуляторов следует хранить их в полуразряженном состоянии в холодильнике при температуре 3-4°C, предварительно упаковав в полиэтиленовый пакет с вакуум-замком. Перед использованием аккумулятор необходимо полностью зарядить с помощью штатного зарядного устройства, и при работе не допускать полного разряда аккумулятора (при первой же возможности подзаряжайте батарею в процессе работы).
В заключение статьи хочу сказать, что хоть правила эксплуатации и позволяют сохранить параметры аккумулятора длительное время, однако жизнь диктует свои условия работы, часто не совместимые с понятием правильной эксплуатации такой высокотехнологичной вещи, как литий-ионный аккумулятор.

Ваша оценка: Нет Рейтинг: 3.9 (13 голоса)

Внутреннее устройство литий-ионного аккумулятора

Пришло время погрузиться в глубины химии литий-ионных аккумуляторов.

Попытки создания вторичных химических источников тока восходят к двадцатым годам прошлого века. Исследователей привлекала высокая теоретическая емкость таких аккумуляторов.

Препятствием на пути к литиевому аккумулятору стала высокая реакционная способность лития. Даже в 1980-х промышленные литиевые аккумуляторные батареи представляли весьма взрыво- и огнеопасные изделия, со средней циклируемостью в 50 циклов. Основной причиной выхода из строя литиевых аккумуляторов было прорастание дендритов лития, образующиеся при циклировании, до электрода с противоположным знаком, что приводило к короткому замыканию внутри элемента и быстрому разогреву. При этом литий бурно реагировал с органическим электролитом, что достаточно часто приводило к взрыву.

Прогресс в области электроники усилил потребность в емких и легких перезаряжаемых источниках тока, а также создал предпосылки к появлению систем управления аккумуляторными батареями (BMS). В 1992 году корпорация Sony представила миру новое видение аккумулятора на основе лития.

В новых аккумуляторах металлический литий был заменен более безопасной ионной формой. Для обеспечения безопасности аккумуляторные батареи оснащались системой BMS (контроль режимов заряда и разряда позволил резко снизить риск появления в аккумуляторе металлического лития - основного виновника взрывоопасности литий-ионного аккумулятора).

Первый литий-ионный аккумулятор имел положительный электрод на основе кобальтата лития, отрицательный электрод на основе углерода (Sony применила кокс - материал, получаемый при термической обработке каменного угля) и электролит на базе гексафторфосфида лития, растворенного в органическом растворителе.

Поскольку Sony не спешила делиться патентом на свои новые аккумуляторы, другие производители нашли выход из положения в применении новых химических составов электродов и изменении свойств электролита.

Первые модификации затронули структуру отрицательного электрода - кокс заменяли на графит различной степени зернистости. Однако, химики Sony настолько удачно применили дешевый кокс с великолепными характеристиками, что другим производителям аналогичных аккумуляторов с графитовыми электродами пришлось пройти долгий путь до подбора правильной структуры графитового порошка, обеспечивающего такие же параметры при эксплуатации.

Поскольку литий-кобальтовый положительный электрод уже был запатентован Sony, то взоры исследователей обратились к альтернативным вариантам - электроды создавались на базе литий-марганцевых, литий-железо-фосфатных и многих других химических составляющих.
Схема кристаллической решетки литий-кобальтового электродаСхема кристаллической решетки литий-кобальтового электрода

Многие из новых электродов показали себя с лучшей стороны и оказались востребованными рынком. В настоящее время наибольшее распространение получили литий-марганцевые, литий-кобальтовые и литий-железофосфатные литий-ионные аккумуляторы.

С помощью замечательной бесплатной программы 3D моделирования Blender мне удалось схематично представить кристаллические решетки различных вариантов положительных электродов литий-ионных аккумуляторов.

Как вы можете видеть - для литий-кобальтовой кристаллической решетки характерно расположение ионов лития послойно. Такое расположение предсказывает достаточно хорошие разрядные характеристики аккумулятора, однако стабильность такой кристаллической решетки относительно низка, поэтому литий-кобальтовые аккумуляторы плохо переносят разряд большими токами.
Кристаллическая решетка литий-марганцевого электродаКристаллическая решетка литий-марганцевого электрода

Для литий-марганцевых аккумуляторов характерно "трехмерное" расположение ионов лития в кристаллической решетке положительного электрода. Такое расположение ведет к хорошей переносимости высоких токов разряда и достаточно хорошей стабильности электрода в процессе эксплуатации.

Литий-железофосфатные положительные электроды весьма стабильны - что очень хорошо видно по крепкой кристаллической решетке с "каналами" для ионов лития. Однако этот факт резко ограничивает подвижность ионов лития и такими электродами стали пользоваться относительно недавно - после того, как производителям удалось создать электроды, собираемые из частиц литий-железофосфата размером в сотни нанометров (размер частиц в сто раз меньше, чем у "3D" литий-марганцевых аккумуляторов, следовательно общая площадь на четыре порядка выше и этот факт кардинально улучшает характеристики литий-железофосфата).
Схема кристаллической решетки железофосфата литияСхема кристаллической решетки железофосфата лития

Приобретя модную нынче приставку "нано-" к своему названию, литий-железофосфатные аккумуляторы оказались одними из самых перспективных для дальнейшего использования в мощных устройствах (их можно использовать даже как стартерные аккумуляторы для автомобилей).

Кроме материала для отрицательного электрода производители научились применять в качестве электролита полимерный материал с включениями гелеобразного литий-проводящего наполнителя. Такие литий-ионные аккумуляторы с полимерным электролитом сейчас стали стандартом для миниатюрных устройств.

Разработки в области полимерных электролитов позволили создать твердый электролит, проводящий ионы лития по механизму обмена ионов внутри матрицы электролита. Такой электролит позволил вернуть к жизни захиревшие аккумуляторы с электродами из металлического лития.

Твердый электролит создает в месте контакта с металлическим литием поверхность, препятствующую образованию дендритов лития при циклировании, что позволяет забыть об основной проблеме, приводящей к возгоранию и взрыву литиевых аккумуляторов.

Как всегда, в бочке меда оказалась хорошая примесь дегтя - литий-полимерные аккумуляторы могут работать только при температурах свыше 40 градусов Цельсия (так как ионная проводимость твердого электролита при комнатной температуре ничтожна). Необходимость высокой рабочей температуры диктует необходимость системы подогрева аккумулятора - поэтому можно не верить производителям, гордо маркирующим свои аккумуляторы для мобильных телефонов как "Li-Pol" (на самом деле это литий-ионный аккумулятор с полимерным электролитом).

Как бы мне не хотелось закончить статью, однако осталась еще тема отрицательного электрода в литий-ионном аккумуляторе. В настоящее время появляются разработки на базе титаната лития (с модной приставкой "нано-"). Сочетание этих электродов с положительными электродами на основе литий-железофосфата сулит резкое увеличение срока жизни и уровня безопасности литий-ионных аккумуляторов.

Конечно же, в небольшой статье невозможно охватить такую емкую тему, как химия основанных на литии вторичных химических источников тока, однако беглый обзор существующих решений поможет читателю не утонуть в огромной массе рекламных заявлений производителей. Каждые полгода появляются новые разработки на ниве литий-ионных аккумуляторов, и только время и опыт может дать ответы на вопросы соответствия эксплуатационных характеристик, заявленных производителями, реальным показателям.

Ваша оценка: Нет Рейтинг: 4.2 (178 голоса)